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since (i) and (ii) are also valid for o and »,. This proves (iii).

As an application of Theorem 3, let u be real. Then » is real by (ii). Hence »
= 0. Then u = 0 by (i). It follows that, for any continuous function 4 on B,
there exists a sequence of polynomials whose real parts converge uniformly to 4 on
B. By the maximum modulus principle, the sequence of real parts must converge
uniformly on C, and the limit function will be harmonic on U. Thus we have:

THEOREM 4. Let h be a continuous function on B. Then h can be extended to be
continuous on C and harmonic on U, and the extended function can be uniformly ap-
proximated on C by real parts of polynomaials.

This theorem includes the solution of the Dirichlet problem for C, which is known.
The further fact that the resulting harmonic extension of 4 can be uniformly ap-
proximated by real parts of polynomials seems to be new.

As an application of Theorem 4, one can prove the following theorem,* whose
proof will be given elsewhere:

TueorREM 5. If A is a uniformly closed algebra of continuous functions on B, which
includes the polynomials, then either each function of A can be extended to be continuous
on C and analytic on U, or A consists of all continuous functions on B.

This generalizes a well-known result of Wermer.®

* This work was done with the support of ONR Contract NONR-222(37).
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NON-PARALLELIZABILITY OF THE n-SPHERE FOR n > 7

By MicHEL A. KERVAIRE
INSTITUTE FOR ADVANCED STUDY

Communicated by N. E. Steenrod, January 23, 19658

We shall show that the recent results of R. Bott» 2: w2,(U(q)) = Z/q!Z and the
periodicity of the stable homotopy groups of SO(n) and U(n) imply the

THEOREM. For s = 3, the sphere Si,_1 of dimension 4s — 1 s not parallelizable.

Recall that a differentiable closed manifold of dimension # is said to be paralleliz-
able if it admits a continuous field of tangent n-frames. It is well known that Sy,
s = 1, is not parallelizable.> » ¢ Thus S,, Ss, and Sy, which are known to be paral-
lelizable, are the only spheres which have this property.

Let a: SO(n) — U(n) and 8: U(n) — SO(2n) be the standard injections.
« sends a matrix A ¢ SO(n) into itself, the entries of a(A4) being regarded as com-
plex numbers. Bsends C = (c,,,) into the 2n X 2n matrix W, given by

Woy,20 = Way-1,20-1 = Qu,0, Woy_1,20 = —Way,20-1 = bu.a
(1 £ u, v £ n,Cup = o + tby,,). We are interested in the induced homomor-
phisms on homotopy groups a, :m(SO(n)) = m(U(n)), B,:m(U(n)) = m(SO(2n)),
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and more particularly in the composition 8,a,: m(SO(n)) — m(SO(2n)).

LemMMa 1. In the stable range, i.e., for k < n — 1, one has B,a, = 2i,, where 1,:
m(SO(n)) — m,(SO(2n)) s induced by the inclusion i: SO(n) = SO(2n).

Since by R. Bott,! 74,_1(SO) and m_;(U) are infinite cyclic, the homomorphisms
a,: w1 (SO(m)) = w1 (U(n)) and B,:  w4—1(U(n)) — 741 (SO(2n)) are repre-
sented (in the stable range, 4s + 1 < n) by multiplication with integers a,, resp.
b, (which are determined only up to sign, since we do not specify our choice for the
generators of m_1(SO) and 74,_;(U)). From the above lemma follows the

COROLLARY: a,-b, = 2.

It is not difficult to obtain a; = 2, a; = 1.

LemMmA 3. a, and b, are periodic of period 2, i.e., @542 = a,, byy2 = b,.  (This in-
formation is not needed for the theorem to be proved).

Consider now the commutative diagram in which 7 is to be large (2s < n):

T451(SO2n)) 25 w45 1(Vion,2ntsy2) = was_2(SO(4s — 2)) = 0

(A T8, T
7"4:—1(U(n)) g 7"43—1(Wn,n—2s+1) - 7743—2([](28 - 1)) g 0:

where the rows are portions of the homotopy sequences of the fibrations SO(2n)/
SO(4s — 2) = Vi 2nus42 With projection p, and Un)/U@2s — 1) = W, a—ssni
with projection ¢, respectively. B’: U(n)/U2s — 1) — SO(2n)/SO(4s — 2) is
induced by 8: U(n) = SO(2n). ‘

By R. Bott, my,2(U@2s — 1)) = Z/(2s — 1)!Z. Hence ¢, is (up to sign) the
multiplication by (2s — 1)!. By B. Eckmann}® section 3.6, ms_1(Von2nsi2) =
Z,. Fors z 3, (2s — 1)!is divisible by 4, and thus 8’,¢, = p,8, = 0.

We need the following, probably well-known

LemMma 2. If Sy1 is parallelizable, then w4,_o(SO(4s — 2)) = 0.

Let us assume now that S,_; is parallelizable. Then p,: my_1(SO(2n)) —
T15-1(Van,2n—4s+2) 18 an epimorphism and hence maps a generator of my,_1(SO(2n))
into a generator of my_1(Van 2n4s42). Therefore, p,B,ev = b, ey, where ey, e
are generators of my,_1(U(n)), mas_1(Vaon,2n—ss12), Tespectively. By Lemma 1, b is
either 1 or 2 and hence p,8, ¢ 0. Consequently, s < 3.

Proof of Lemma 1: Let A be the 2n X 2n matrix

(= )

i.e., @y = 814 forl £ 7 < nanday = 6, ;forn< i < 2n. Since
) By e 7 g

w8

i(X)-A-i(X)-A = (X 0)

we have

0 X).
Let M be the 2n X 2n matrix given by

62{-1,] for 1 é 7 é n,
mq; = .
02(i_n),; forn< i =< 2n.
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It is easily verified that if uy, vy, us, v, . . ., u,, v, are the row vectors of a 2n X
2n matrix Y, then the matrix M -Y has the row vectors uy, us, . . ., Uy, U1, Vs, . . .,
V,. This implies, using (Y-M’)’ = M-Y’ that if Y has column vectors u’;, v’;,
u'y, Vs, ..., U’y vy, then Y- M’ has the column vectors u’y, ..., u',, vy, . .., V'p
From this it follows that

Ba(X) = M-i(X)-A-i(X)-A-M'

for any matrix X e SO(n). Notice that [4| = (—=1)"and |[M| = (—1)""~V/2
Since we are interested in the stable range (k — 1 < n), there is no loss of generality
in assuming n divisible by 4. Then [A ‘ = |M | = +1. From the existence of
paths from A and M to the unit 2n X 2n matrix, follows: Ba is homotopic to the
map SO(n) — SO(2n), which sends X into 7(X)-#(X) = #(X?). By B. Eckmann,*
Satz II, for any map f:Sx — SO(n), the map f? given by f*(x) = [f(x)]? represents
2{ f}, where { f} is the homotopy class of f. This proves Lemma, 1.

Proof of Lemma 2: By P. J. Hilton and J. H. C. Whitehead,® Lemma (4.12), if
Sy is parallelizable, then ay_» = ¢,u, Where ay,_» is the generator of my;_1(Ss—2)
the homomorphism ¢,: m_1(SO(4s — 1)) = m4_1(Sss—2) is induced by the pro-
jection ¢: SO(4s — 1) = S4_» and ux is some element in m,_1(SO4s — 1)).
From the homotopy sequence of SO(4s — 1)/SO0(4s — 2) = S4_s, i.e.,

. —> w1 (SO(4s — 1)) ——>¢* Tas—1(S45—2) —>
Ta5—2(SO(4s — 2)) = my,_2(SO(4s — 1)) = 0,

and the fact that ¢, is an epimorphism, it follows that
T15_2(SO0(4s — 2)) = w4, _2(SO(4s — 1))

(if Sygs—1 is parallelizable).
Consider the homotopy sequence of SO(4s)/SO(4s — 1) = Sy,
o> 14,_1(80(48)) _'p*__) Tys. .1(843_.1) —> 7l'43_2(SO(4.8 - 1)) - 143_2(80(43)) =0.
Since Sy, is assumed to be parallelizable, ¢, is an epimorphism and therefore,
m15_2(SO(4s — 1)) = 0. This proves Lemma 2.
Proof of Lemma 3: By formula (3.4) of R. Bott,! the space of loops over SO
has the same homotopy groups as the quotient space SO/U. Thus for 2s < n,

7451 (2SO(2n)) = w4 1(SO(2n)/U(n)).

However, m_1(2S0(2n)) = 74,(SO(2n)), this latter group being O for odd s and
Z, for s even. Since the order of m4,_1(SO(2n)/U(n)) is clearly equal to b,, we ob-
tain: b, = 1 or 2 according as to whether s is odd or even, respectively. The
equality a, b, = 2 yields the result for a,, which could also have been obtained
directly using (3.3) of Bott.!

LemMA 4. For s odd = 3, the generator of ms;_1(Ss,_2) does not belong to Im ¢,,
where ¢, Ti,_1(SO(4s — 1)) = my,_1(Ss;_2) ©s tnduced by the natural projection.

Proof: We have seen that s = 3 implies p,8, = 0. By Lemma 3, 8, is an epi-
morphism for s odd. Consequently, p, must be trivial and my_2(SO(4s — 2)) =
Z.. The exact homotopy sequence of the fibration SO(4s — 1)/SO(4s — 2)
S4s_2 then yields the result.

The original version of this paper did not contain Lemmas 3 and 4. Lemma 3
was also observed by the referee. I understand from R. Bott that J. Milnor has
also obtained our theorem.

U
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